Jäger's collapsing functions and ρ-inaccessible ordinals

From Cantor's Attic
Jump to: navigation, search

Jäger's collapsing functions are a hierarchy of single-argument ordinal functions ψπψπ introduced by German mathematician Gerhard Jäger in 1984. This is an extension of Buchholz's notation.

Basic Notions

M0M0 is the least Mahlo cardinal, small Greek letters denote ordinals less than M0M0. Each ordinal αα is identified with the set of its predecessors α={β|β<α}.

L denotes the set of all limit ordinals less than M0.

An ordinal α is an additive principal number if α>0 and ξ+η<α for all ξ,η<α. Let P denote the set of all additive principal numbers less than M0.

α=NFα1++αn:⇔α=α1++αnα1αnα1,...,αnP

Cofinality cof(α) of an ordinal α is the least β such that there exists a function f:βα with sup{f(ξ)|ξ<β}=α. An ordinal α is regular, if α is a limit ordinal and cof(α)=α. Let R denote the set of all regular ordinals (ω,M0).

An ordinal α is (weakly) inaccessible if α is a regular limit cardinal larger than ω.

Enumeration function F of class of ordinals X is the unique increasing function such that X={F(α)|αdom(F)} where domain of F, dom(F) is an ordinal number. We use Enum(X) to donate F.

Veblen function

φα=Enum({βP|γ<α(φγ(β)=β)})

Normal form

α=NFφβ(γ):⇔α=φβ(γ)β,γ<α

An ordinal α is a strongly critical if φ(α,0)=α. Let S denote the set of all strongly critical ordinals less than M0.

Definition of S(γ) for arbitrary γ.

S(γ)={γ} if γS{0}

S(γ)={α1,...,αn} if γ=NFα1++αnP

S(γ)={α,β} if γ=NFφα(β)S

ρ-Inaccessible Ordinals

An ordinal is ρ-inaccessible if it is a regular cardinal and limit of α-inaccessible ordinals for all α<ρ. So the 0-inaccessible ordinals are exactly the regular cardinals >ω, the 1-inaccessible ordinals are the inaccessible ordinals. Functions Iρ:M0M0 enumerate the ρ-inaccessible ordinals less than M0 and their limits.

Iα=Enum({βR|γ<α(Iγ(β)=β)})

Normal form

α=NFIβ(γ):⇔α=Iβ(γ)γL

Definition of γ for γR.

γ=0 if γ=NFIα(0)

γ=Iα(β) if γ=NFIα(β+1)

Properties

Veblen function ρ-Inaccessible Ordinals
φα(β)P Iα(0),Iα(β+1)R
γ<αφγ(φα(β))=φα(β) γ<αIγ(Iα(β))=Iα(β)
β<γφα(β)<φα(γ) β<γIα(β)<Iα(γ)
α<βφα(0)<φβ(0) α<βIα(0)<Iβ(0)

The Ordinal Functions ψκ

Every ψκ is a function from M0 to κ which "collapses" the elements of M0 below κ. By the Greek letters κ and π we shall denote uncountable regular cardinals less than M0.

Inductive Definition of Cκ(α) and ψκ(α).

{κ}κCnκ(α)

S(γ)Cnκ(α)γCn+1κ(α)

β,γCnκ(α)Iβ(γ)Cn+1κ(α)

γ<π<κπCnκ(α)γCn+1κ(α)

γ<αγ,πCnκ(α)γCπ(γ)ψπ(γ)Cn+1κ(α)

Cκ(α)={Cnκ(α)|n<ω}

ψκ(α)=min{ξ|ξCκ(α)}

Normal form

α=NFψκ(β):⇔α=ψκ(β)βCκ(β)

Fundamental sequences

The fundamental sequence for an ordinal number α with cofinality cof(α)=β is a strictly increasing sequence (α[η])η<β with length β and with limit α, where α[η] is the η-th element of this sequence.

Inductive Definition of T.

  • 0T
  • α=NFα1++αnα1,...,αnTαT
  • α=NFφβ(γ)β,γTαT
  • α=NFIβ(γ)β,γTαT
  • α=NFψκ(β)κ,βTαT

Below we write I(α,β) for Iα(β) and φ(α,β) for φα(β)

For non-zero ordinals αT we define the fundamental sequences as follows:

  • If α=φ(0,β+1) then cof(α)=ω and α[η]=φ(0,β)×η
  • If α=φ(β+1,0) then cof(α)=ω and α[0]=0 and α[η+1]=φ(β,α[η])
  • If α=φ(β+1,γ+1) then cof(α)=ω and α[0]=φ(β+1,γ)+1 and α[η+1]=φ(β,α[η])
  • If α=φ(β,0) and βL then cof(α)=cof(β) and α[η]=φ(β[η],0)
  • If α=φ(β,γ+1) and βL then cof(α)=cof(β) and α[η]=φ(β[η],φ(β,γ)+1)
  • If α=φ(β,γ) and γL then cof(α)=cof(γ) and α[η]=φ(β,γ[η])


  • If α=ψI(0,0)(0) then cof(α)=ω and α[0]=0 and α[η+1]=φ(α[η],0)
  • If α=ψI(0,β+1)(0) then cof(α)=ω and α[0]=I(0,β)+1 and α[η+1]=φ(α[η],0)
  • If α=ψI(0,β)(γ+1) then cof(α)=ω and α[0]=ψI(0,β)(γ)+1 and α[η+1]=φ(α[η],0)


  • If α=ψI(β+1,0)(0) then cof(α)=ω and α[0]=0 and α[η+1]=I(β,α[η])
  • If α=ψI(β+1,γ+1)(0) then cof(α)=ω and α[0]=I(β+1,γ)+1 and α[η+1]=I(β,α[η])
  • If α=ψI(β+1,γ)(δ+1) then cof(α)=ω and α[0]=ψI(β+1,γ)(δ)+1 and α[η+1]=I(β,α[η])


  • If α=ψI(β,0)(0) and βL then cof(α)=cof(β) and α[η]=I(β[η],0)
  • If α=ψI(β,γ+1)(0) and βL then cof(α)=cof(β) and α[η]=I(β[η],I(β,γ)+1)
  • If α=ψI(β,γ)(δ+1) and βL then cof(α)=cof(β) and α[η]=I(β[η],ψI(β,γ)(δ)+1)


  • If α=α1+α2++αn with n2 then cof(α)=cof(αn) and α[η]=α1+α2++(αn[η])
  • If α=φ(0,0) then cof(α)=α=1 and α[0]=0
  • If α=I(β,0) or α=I(β,γ+1) then cof(α)=α and α[η]=η
  • If α=I(β,γ) and γL then cof(α)=cof(γ) and α[η]=I(β,γ[η])
  • If α=ψπ(β) and ωcof(β)<π then cof(α)=cof(β) and α[η]=ψπ(β[η])
  • If α=ψπ(β) and cof(β)=ρπ then cof(α)=ω and α[η]=ψπ(β[γ[η]]) with γ[0]=1 and γ[η+1]=ψρ(β[γ[η]])


Limit of this notation λ. If α=λ then cof(α)=ω and α[0]=0 and α[η+1]=I(α[η],0)


See also

Other ordinal collapsing functions:

Madore's ψ function

Buchholz's ψ functions

collapsing functions based on a weakly Mahlo cardinal


References

1. W.Buchholz. A New System of Proof-Theoretic Ordinal Functions. Annals of Pure and Applied Logic (1986),32

2. M.Jäger. ρ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlagenforsch (1984),24