Jäger's collapsing functions and ρ-inaccessible ordinals
Jäger's collapsing functions are a hierarchy of single-argument ordinal functions ψπ
Contents
[hide]Basic Notions
M0
L denotes the set of all limit ordinals less than M0.
An ordinal α is an additive principal number if α>0 and ξ+η<α for all ξ,η<α. Let P denote the set of all additive principal numbers less than M0.
α=NFα1+⋯+αn:⇔α=α1+⋯+αn∧α1≥⋯≥αn∧α1,...,αn∈P
Cofinality cof(α) of an ordinal α is the least β such that there exists a function f:β→α with sup{f(ξ)|ξ<β}=α. An ordinal α is regular, if α is a limit ordinal and cof(α)=α. Let R denote the set of all regular ordinals ∈(ω,M0).
An ordinal α is (weakly) inaccessible if α is a regular limit cardinal larger than ω.
Enumeration function F of class of ordinals X is the unique increasing function such that X={F(α)|α∈dom(F)} where domain of F, dom(F) is an ordinal number. We use Enum(X) to donate F.
Veblen function
φα=Enum({β∈P|∀γ<α(φγ(β)=β)})
Normal form
α=NFφβ(γ):⇔α=φβ(γ)∧β,γ<α
An ordinal α is a strongly critical if φ(α,0)=α. Let S denote the set of all strongly critical ordinals less than M0.
Definition of S(γ) for arbitrary γ.
S(γ)={γ} if γ∈S∪{0}
S(γ)={α1,...,αn} if γ=NFα1+⋯+αn∉P
S(γ)={α,β} if γ=NFφα(β)∉S
ρ-Inaccessible Ordinals
An ordinal is ρ-inaccessible if it is a regular cardinal and limit of α-inaccessible ordinals for all α<ρ. So the 0-inaccessible ordinals are exactly the regular cardinals >ω, the 1-inaccessible ordinals are the inaccessible ordinals. Functions Iρ:M0→M0 enumerate the ρ-inaccessible ordinals less than M0 and their limits.
Iα=Enum({β∈R|∀γ<α(Iγ(β)=β)})
Normal form
α=NFIβ(γ):⇔α=Iβ(γ)∧γ∉L
Definition of γ− for γ∈R.
γ−=0 if γ=NFIα(0)
γ−=Iα(β) if γ=NFIα(β+1)
Properties
Veblen function | ρ-Inaccessible Ordinals |
---|---|
φα(β)∈P | Iα(0),Iα(β+1)∈R |
γ<α⇒φγ(φα(β))=φα(β) | γ<α⇒Iγ(Iα(β))=Iα(β) |
β<γ⇒φα(β)<φα(γ) | β<γ⇒Iα(β)<Iα(γ) |
α<β⇒φα(0)<φβ(0) | α<β⇒Iα(0)<Iβ(0) |
The Ordinal Functions ψκ
Every ψκ is a function from M0 to κ which "collapses" the elements of M0 below κ. By the Greek letters κ and π we shall denote uncountable regular cardinals less than M0.
Inductive Definition of Cκ(α) and ψκ(α).
{κ−}∪κ−⊂Cnκ(α)
S(γ)⊂Cnκ(α)⇒γ∈Cn+1κ(α)
β,γ∈Cnκ(α)⇒Iβ(γ)∈Cn+1κ(α)
γ<π<κ∧π∈Cnκ(α)⇒γ∈Cn+1κ(α)
γ<α∧γ,π∈Cnκ(α)∧γ∈Cπ(γ)⇒ψπ(γ)∈Cn+1κ(α)
Cκ(α)=∪{Cnκ(α)|n<ω}
ψκ(α)=min{ξ|ξ∉Cκ(α)}
Normal form
α=NFψκ(β):⇔α=ψκ(β)∧β∈Cκ(β)
Fundamental sequences
The fundamental sequence for an ordinal number α with cofinality cof(α)=β is a strictly increasing sequence (α[η])η<β with length β and with limit α, where α[η] is the η-th element of this sequence.
Inductive Definition of T.
- 0∈T
- α=NFα1+⋯+αn∧α1,...,αn∈T⇒α∈T
- α=NFφβ(γ)∧β,γ∈T⇒α∈T
- α=NFIβ(γ)∧β,γ∈T⇒α∈T
- α=NFψκ(β)∧κ,β∈T⇒α∈T
Below we write I(α,β) for Iα(β) and φ(α,β) for φα(β)
For non-zero ordinals α∈T we define the fundamental sequences as follows:
- If α=φ(0,β+1) then cof(α)=ω and α[η]=φ(0,β)×η
- If α=φ(β+1,0) then cof(α)=ω and α[0]=0 and α[η+1]=φ(β,α[η])
- If α=φ(β+1,γ+1) then cof(α)=ω and α[0]=φ(β+1,γ)+1 and α[η+1]=φ(β,α[η])
- If α=φ(β,0) and β∈L then cof(α)=cof(β) and α[η]=φ(β[η],0)
- If α=φ(β,γ+1) and β∈L then cof(α)=cof(β) and α[η]=φ(β[η],φ(β,γ)+1)
- If α=φ(β,γ) and γ∈L then cof(α)=cof(γ) and α[η]=φ(β,γ[η])
- If α=ψI(0,0)(0) then cof(α)=ω and α[0]=0 and α[η+1]=φ(α[η],0)
- If α=ψI(0,β+1)(0) then cof(α)=ω and α[0]=I(0,β)+1 and α[η+1]=φ(α[η],0)
- If α=ψI(0,β)(γ+1) then cof(α)=ω and α[0]=ψI(0,β)(γ)+1 and α[η+1]=φ(α[η],0)
- If α=ψI(β+1,0)(0) then cof(α)=ω and α[0]=0 and α[η+1]=I(β,α[η])
- If α=ψI(β+1,γ+1)(0) then cof(α)=ω and α[0]=I(β+1,γ)+1 and α[η+1]=I(β,α[η])
- If α=ψI(β+1,γ)(δ+1) then cof(α)=ω and α[0]=ψI(β+1,γ)(δ)+1 and α[η+1]=I(β,α[η])
- If α=ψI(β,0)(0) and β∈L then cof(α)=cof(β) and α[η]=I(β[η],0)
- If α=ψI(β,γ+1)(0) and β∈L then cof(α)=cof(β) and α[η]=I(β[η],I(β,γ)+1)
- If α=ψI(β,γ)(δ+1) and β∈L then cof(α)=cof(β) and α[η]=I(β[η],ψI(β,γ)(δ)+1)
- If α=α1+α2+⋯+αn with n≥2 then cof(α)=cof(αn) and α[η]=α1+α2+⋯+(αn[η])
- If α=φ(0,0) then cof(α)=α=1 and α[0]=0
- If α=I(β,0) or α=I(β,γ+1) then cof(α)=α and α[η]=η
- If α=I(β,γ) and γ∈L then cof(α)=cof(γ) and α[η]=I(β,γ[η])
- If α=ψπ(β) and ω≤cof(β)<π then cof(α)=cof(β) and α[η]=ψπ(β[η])
- If α=ψπ(β) and cof(β)=ρ≥π then cof(α)=ω and α[η]=ψπ(β[γ[η]]) with γ[0]=1 and γ[η+1]=ψρ(β[γ[η]])
Limit of this notation λ. If α=λ then cof(α)=ω and α[0]=0 and α[η+1]=I(α[η],0)
See also
Other ordinal collapsing functions:
collapsing functions based on a weakly Mahlo cardinal
References
1. W.Buchholz. A New System of Proof-Theoretic Ordinal Functions. Annals of Pure and Applied Logic (1986),32
2. M.Jäger. ρ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlagenforsch (1984),24